Comparison of the Pharmacokinetics of STS101, an Intrasal Dry Powder Formulation of Dihydroergotamine, with Other Intranasal, Injectable, and Oral Inhaled DHE Formulations

Shannon Strom, PhD1; John Kollins2; and Detlef Albrecht, MD1
1Satsuma Pharmaceuticals, Inc., South San Francisco, United States

Objectives
To perform a literature review to compare pharmacokinetic (PK) parameters for several formulations of dihydroergotamine mesylate (DHE) including intravenous (IV), intramuscular (IM), intranasal liquid sprays (IN), orally inhaled pulmonary, and IN dry powder that are marketed, have demonstrated anti-migraine efficacy in controlled Phase 3 studies, or are in active development.

Methods
A literature search was performed to compare the PK results of several formulations of DHE including the approved products Migranal® (liquid nasal spray) and D.H.E. 45® (administered IV and IM), and the development-stage products INP104 (liquid nasal spray), MAP0004 (orally inhaled pulmonary whose development has been discontinued), and STS101 (dry powder nasal formulation). The 5.2 mg DHE dose for STS101 is equivalent to 6.0 mg DHE mesylate.

The data are presented from cross-trial comparisons, not head-to-head analyses. The study protocol designs, subject demographics, and analyses were similar across the studies so comparisons can be made.

One item that differed across the studies was the plasma DHE analytical assay, as more sensitive assays were developed over time. The analytical method used through 1996 was a radioimmunoassay with a limit of quantitation of 20 pg/mL. The more recent invesitgational development programs used high-performance liquid chromatography in conjunction with tandem mass spectrometry (LC/MS/MS) methods with a limit of quantitation of 8 pg/mL.

Extraction of DHE plasma concentration curves from the published literature was accomplished using WebPlotDigitizer by Automers.

If a coefficient of variation was not provided in the published literature, it was calculated as the ratio of the standard deviation to the mean.

The estimated minimum threshold concentration for efficacy is derived from the Migranal Summary Basis of Approval, 1997.

Results
- Rapid freedom from pain and associated symptoms are the goals for the acute treatment of migraine, so Cmax and AUC0-2hr are important predictors of a clinical response.
- STS101 achieved rapid and sustained high drug exposure with low variability (Table 1). STS101 had a higher Cmax than intranasal liquid sprays Migranal and INP104 and approached that of the orally inhaled MAP0004.
- The STS101 AUC0-2hr was 2-fold or more greater than for Migranal, INP104, and MAP0004. The STS101 AUC0-2hr was 2-fold or more than for Migranal, INP104, and MAP0004. STS101 achieved 83% of the total drug exposure (AUC0-inf) of IM DHE and was comparable to IV DHE.
- STS101 achieved higher cumulative drug exposure than Migranal, INP104, and MAP0004 by approximately 30 minutes and all time points thereafter (Figure 1).
- Plasma concentrations and AUC values for Migranal were similar across multiple historical studies and in the STS101 Phase 1 study, but were lower in the INP104 Phase 1 study (Figure 2, Table 1).
- The coefficient of variation (%CV) for Cmax, AUC0-2hr, and AUC0-inf were lower with STS101 versus Migranal and INP104 and were similar to MAP0004 (Figure 3).

Conclusions
- STS101 demonstrated higher PK (Cmax, AUC0-2hr, and AUC0-inf) and less PK variability (%CV) as compared to the DHE liquid nasal spray products (Migranal and INP104).
- As compared with orally inhaled pulmonary DHE (MAP0004), STS101 achieved similar Cmax and higher AUC at all time points after ~30 minutes as well as similar PK variability (%CV).
- STS101 showed high sustained plasma concentrations and AUC0-inf comparable to the IV DHE values (but avoiding the high Cmax of IV DHE associated with adverse events) and approaching the IM DHE values.
- Lower PK variability may lead to more consistent and reliable clinical performance.
- The PK profile of STS101 predicts that the acute treatment goals of rapid and consistent pain freedom and associated symptoms without recurrence should be achieved.
- A Phase 3 efficacy study (EMERGE) with STS101 is ongoing to evaluate the product as an acute treatment for migraine (NCT 03901482).

Table 1. Pharmacokinetic Parameters for Different Routes of Administration of DHE

<table>
<thead>
<tr>
<th>DHE Mesylate Formulations</th>
<th>Mean Cmax ± SD (pg/mL)</th>
<th>Mean AUC0-2hr ± SD (pg*mL/hr)</th>
<th>Mean AUC0-inf ± SD (pg*mL/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.H.E. 45 IM (1 mg)</td>
<td>1,316 ± 989 (%CV: 75.2)</td>
<td>6,498 ± 3,551 (%CV: 54.7)</td>
<td>14,490 ± 3,780 (%CV = 26%)</td>
</tr>
<tr>
<td>D.H.E. 45 IV (1 mg)</td>
<td>4,791 ± 907 (%CV: 18.9)</td>
<td>7,331 ± 3,194 (%CV: 43.6)</td>
<td>100%</td>
</tr>
<tr>
<td>Migranal Nasal Spray (2 mg)</td>
<td>1,131 ± 5024 (%CV = 44.42)</td>
<td>1,281 ± 682 (%CV: 53.3)</td>
<td>6,498 ± 3,551 (%CV: 54.7)</td>
</tr>
<tr>
<td>INP104 Nasal Spray (1.45 mg)</td>
<td>1,237 ± 5024 (%CV = 44.42)</td>
<td>3,860 ± 591.4 (%CV: 16.8)</td>
<td>3,019 ± 513.4 (%CV: 17.0%2)</td>
</tr>
<tr>
<td>STS101-5.2 mg DHE (From STS101 Phase 1 Clinical Trial, Part 2)</td>
<td>1,595 ± 800.9 (%CV: 50.22)</td>
<td>14,490 ± 3,780 (%CV = 26%)</td>
<td>1,400 ± 798 (%CV = 54.7)</td>
</tr>
</tbody>
</table>

References
7. Shrewsbury SB, Jeleva M, Satterly K, Lickliter J, Hoekman J. STOP 101: A Phase 1, Randomized, Open-Label, Comparative Bioavailability Study of INP104, Dihydroergotamine Mesylate Formulation Mean Cmax ± SD (pg/mL) DHE Mesylate Formulations | Mean Cmax ± SD (pg/mL) | Mean AUC0-2hr ± SD (pg*mL/hr) | Mean AUC0-inf ± SD (pg*mL/hr) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D.H.E. 45 IM (1 mg)</td>
<td>1,316 ± 989 (%CV: 75.2)</td>
<td>6,498 ± 3,551 (%CV: 54.7)</td>
<td>14,490 ± 3,780 (%CV = 26%)</td>
</tr>
<tr>
<td>D.H.E. 45 IV (1 mg)</td>
<td>4,791 ± 907 (%CV: 18.9)</td>
<td>7,331 ± 3,194 (%CV: 43.6)</td>
<td>100%</td>
</tr>
<tr>
<td>Migranal Nasal Spray (2 mg)</td>
<td>1,131 ± 5024 (%CV = 44.42)</td>
<td>1,281 ± 682 (%CV: 53.3)</td>
<td>6,498 ± 3,551 (%CV: 54.7)</td>
</tr>
<tr>
<td>INP104 Nasal Spray (1.45 mg)</td>
<td>1,237 ± 5024 (%CV = 44.42)</td>
<td>3,860 ± 591.4 (%CV: 16.8)</td>
<td>3,019 ± 513.4 (%CV: 17.0%2)</td>
</tr>
<tr>
<td>STS101-5.2 mg DHE (From STS101 Phase 1 Clinical Trial, Part 2)</td>
<td>1,595 ± 800.9 (%CV: 50.22)</td>
<td>14,490 ± 3,780 (%CV = 26%)</td>
<td>1,400 ± 798 (%CV = 54.7)</td>
</tr>
</tbody>
</table>

Figure 1. STS101 DHE Plasma Concentrations Versus Other Non-Injected DHE Products

Figure 2. Plasma Concentrations for DHE Liquid Nasal Sprays are Similar Across Multiple Studies Except the INP104 Phase 1 Study

Figure 3. STS101 Cmax and AUC Coefficient of Variation for STS101 are Lower than DHE Liquid Nasal Sprays and Comparable to Oral Pulmonary DHE in a Cross-Trial Comparison

Presented at the International Headache Conference, 5-8 September 2019